A 100-watt Compact Z-Match Antenna Tuner By Phil Salas AD5X

I've been reading about Z-Match antenna tuners for quite awhile now. The nice thing about the Z-Match tuner is that it will match just about anything on all HF bands, and only uses two controls. The folks who use these tuners speak very highly of them, but it always seemed that acquiring the necessary air-wound inductors and variable capacitors was more trouble than it was worth. In addition, air-wound inductors imply large tuners and I'm interested in something that is compact enough for me to easily take along with my portable HF set-up.

Then I picked up an EMTECH ZM-2 QRP Z-Match tuner (www.emtech.steadynet.com) at a good price. These were only sold in kit form at the time, and the guy who originally bought it decided it was too much trouble to put it together. In any case, after building it to go along with my FT-817, I became a real believer in Z-Match tuners. Now, my goal was to build a Z-Match tuner that was relatively small and portable, and yet would handle the 100-watt output power of my IC-706MKIIG.

One day while I was browsing through the ARRL Antenna Compendium, Volume 5, I found an excellent article by Charles Lofgren (W6JJZ) on Z-Match tuners. In that article, the author suggested using a torroid core-based inductor. This would solve my air-core inductor/size problem. Then I found three-section 440-pf/section variable capacitors from Fair Radio Sales (www.fairradio.com) at reasonable prices (ASP-440). These variables are no longer available, but you only need a 1-section and a 2-section capacitor for C1 and C2 respectively, both with 500 volt ratings.

Tuner Construction

The final circuit shown in Figure 1 is based on W6JJZ's article. The only real change I made was to go from two switch-selected output links (10-turns and 4-turns) to a single 8-turn output link. I also increased the variable capacitor size based on the 440-pf Fair Radio capacitors. So far, I haven't found anything I can't match from 80-10 meters!

I built my tuner into a Radio Shack RS270-253 aluminum box as shown in the photos. This box is only 5-1/4"W x 3"H x 5-7/8"D. The torroid inductor is supported by its leads, and some hot glue between the inductor and one variable capacitor (C2). I also put a little hot glue between the inductor and side of the box.

The variable capacitors must be insulated from ground. In order to do this, I mounted both capacitors on a piece of perf-board that was cut to be just wide enough to fit into the aluminum case. Then this capacitor/perf-board assembly was mounted in the case with stand-off screws. See Figure 2. I made my own capacitor shaft couplings from a 1/8-NPT brass nipple, available from the plumbing section of most hardware stores. These nipples have a ½-inch inside diameter. I cut a 1-inch nipple in half (so as to make two couplers). Then I drilled and tapped holes for two #6 screws in each piece. See Figure 3. For the insulated shafts, I used ¼" diameter nylon rods available from any True Value hardware store.

Operation

Tuning the Z-Match tuner is very easy. First adjust C2 for maximum receiver noise. Then apply some RF power and adjust C1 and C2 for minimum SWR. If you need more capacitance for matching, you can switch in an extra section (or two) of C1 if available, or better yet switch in a fixed mica capacitor across C1. Balanced feedlines terminated in banana plugs can plug right into the SO-239 and adjacent banana jack. For a coax output, an SPST switch grounds one end of the output link as shown in the schematic (Figure 1).

Optical HF SWR Meter for the Z-Match Tuner

You can use any external SWR meter with the Z-Match tuner including the SWR meter built into most rigs, but I built-in an optical SWR meter for convenience. Refer to Figure 4. I found the basic circuit in an old Ham Radio Magazine. It used meters, but I found that this circuit works great with the high intensity LEDs that are now on the market. I built this on a small piece of perf-board and mounted it in the Z-Match tuner, visible is several of the photos. The perf-board is mounted to the solder lug on the input SO-239. I also added a little hot glue between the perf-board and the back of the chassis. All resistors are ¼-watt. This circuit works well for your typical 100-watt HF transmitter. This is a broadband circuit and it is good through at least 10-meters. With careful lead control, it should work up through 6-meters. The transformer is an FT37-43 ferrite core wound with 10 bifilar turns of #26 enameled wire. The primary is just the RF wire passing through the center of the torroid.

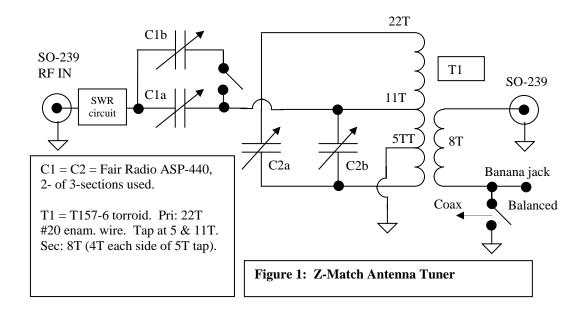
To calibrate the SWR bridge, connect the output to a good 50-ohm load. Apply RF power on any HF band and adjust the 20-pf variable capacitor until the "REF" LED goes out. The "FWD" LED just gives an indication of transmitter power. You may want to increase the value of the 4.7K-ohm resistor in the "FWD" circuit if the green LED is too bright for you. Or you could even eliminate this LED if desired.

Now to adjust your Z-Match antenna tuner, vary the two capacitors until the "REF" LED is out. Your SWR should be less than about 1.5:1 when this occurs.

A Bar-graph Display for the Optical SWR Meter

If you don't mind supplying DC power to your Z-Match Tuner/SWR meter, you may prefer to use the bargraph display as shown in Figure 5 for displaying the SWR reverse voltage. I modified my Z-Match tuner to use this method for indicating reflected power. I still use only the green LED for forward power indication. The nice thing about using the bargraph display is that it seems to be easier to dip the SWR since this gives you more of an analog meter feel.

Conclusion


The Z-Match Tuner is an extremely easy antenna tuner to adjust. In the past, the biggest limitation to a compact 100-watt version was the necessity of using large air-wound inductors, and the ability to find reasonably priced multi-section variable capacitors. The tuner described in this article overcomes these obstacles. The result is a wide-band, easily adjustable tuner that is perfect for either portable or base station operation.

<u>Table 1 – Major Parts List and Sources</u>

Part	Source
T157-6	Amidon Associates (<u>www.amidon-inductive.com</u>)
FT37-43	Amidon Associates (<u>www.amidon-inductive.com</u>)
*440pf 3-section var. caps.	Fair Radio APS-440 (<u>www.fairradio.com</u>)
LM3914	All Electronics (<u>www.allelectronics.com</u>)
Metal Case	Radio Shack 270-253 or any convenient-sized case
Perf_hoard	Radio Shack 276-1304

Perf-board Radio Shack 276-1394

^{*} This capacitor is no longer available. You need a 1-section (C1), and a 2-section (C2) variable capacitor of at least 350 pf per section, rated at 500 volts.

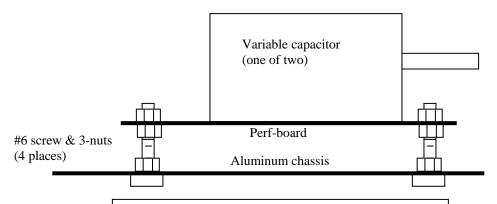


Figure 2: Capacitor Mounting Assembly

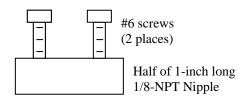
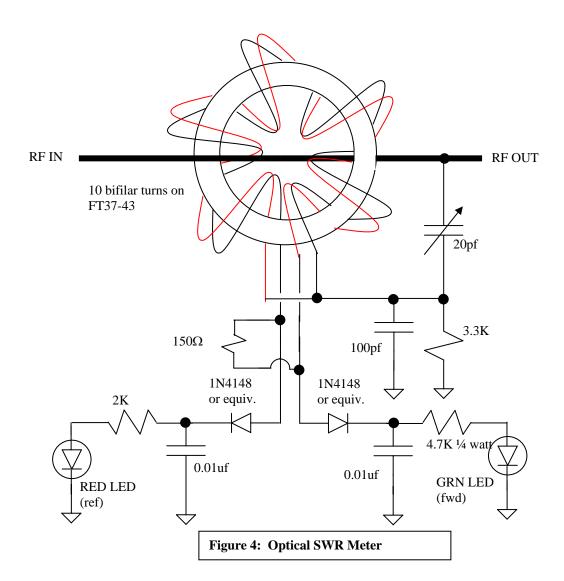



Figure 3: Shaft coupling assembly

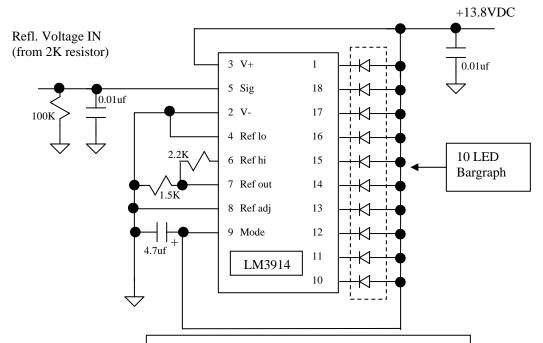
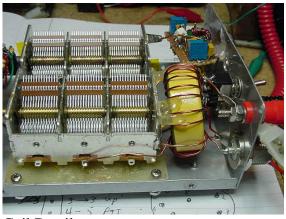
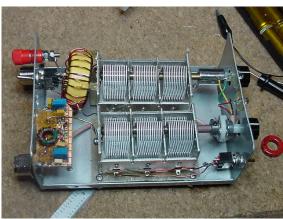
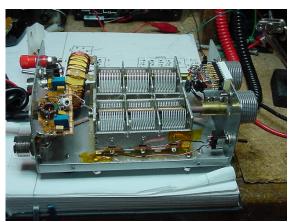
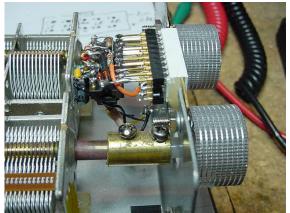




Figure 5: SWR Bargraph Modification




LED Tuner inside with SWR board

LED Tuner front panel

Bargraph Tuner inside

Bargraph Tuner inside close-up

Bargraph Tuner front panel

Tuner backside with power for bargraph